
Natural Language Processing
with Deep Learning

CS224N/Ling284

Lecture 4: Word Window Classification
and Neural Networks

Richard Socher

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 2: Word Vectors

Organization

• Main	midterm:	Feb	13
• Alternative	midterm:	Friday	Feb	9	– tough	choice

• Final	project	and	PSet4	can	both	have	groups	of	3.	
• Highly	discouraged	(especially	for	PSet4)	and	need	more	results	

so	higher	pressure	for	you	to	coordinate	and	deliver.

• Python	Review	session	tomorrow	(Friday)	3-4:20pm	at	nVidia
auditorium

• Coding	session:	Next	Monday,	6-9pm

• Project	website	is	up

1/18/182

Overview	Today:

• Classification	background

• Updating	word	vectors	for	classification

• Window	classification	&	cross	entropy	error	derivation	tips

• A	single	layer	neural	network!

• Max-Margin	loss	and	backprop

• This	will	be	a	tough	lecture	for	some!	à OH
1/18/183

Classification	setup	and	notation

• Generally	we	have	a	training	dataset	consisting	of	samples

{xi,yi}Ni=1

• xi are	inputs,	e.g.	words	(indices	or	vectors!),	context	windows,	
sentences,	documents,	etc.
• Dimension	d

• yi are	labels (one	of	C classes) we	try	to	predict,	for	example:
• classes:	sentiment,	named	entities,	buy/sell	decision
• other	words
• later:	multi-word	sequences

1/18/184

Classification	intuition

• Training	data:	{xi,yi}Ni=1

• Simple	illustration	case:	
• Fixed	2D	word	vectors	to	classify
• Using	logistic	regression
• Linear	decision	boundary

• General	ML	approach: assume	xi are	fixed,	train	logistic	regression	
weights																									(only	modifies	the	decision	boundary)

• Goal:	For	each	x,	predict:

Visualizations	with	ConvNetJS by	Karpathy!
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

1/18/185

Details	of	the	softmax classifier

We	can	tease	apart	the	prediction	function	into	two	steps:

1. Take	the	y’th row	of	W	and	multiply	that	row	with	x:

Compute	all	fc for	c=1,…,C

2. Apply	softmax function	to	get	normalized	probability:

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑓)

1/18/186

Training	with	softmax and	cross-entropy	error

• For	each	training	example	{x,y},	our	objective	is	to	maximize	the	
probability	of	the	correct	class	y

• Hence,	we	minimize	the	negative	log	probability	of	that	class:

1/18/187

Background:	Why	“Cross	entropy”	error

• Assuming	a	ground	truth	(or	gold	or	target)	probability	
distribution	that	is	1	at	the	right	class	and	0	everywhere	else:
p	=	[0,…,0,1,0,…0]	and	our	computed	probability	is	q,	then	the	
cross	entropy	is:	

• Because	of	one-hot	p,	the	only	term	left	is	the	negative	log	
probability	of	the	true	class

1/18/188

Sidenote:	The	KL	divergence

• Cross-entropy	can	be	re-written	in	terms	of	the	entropy	and	
Kullback-Leibler divergence	between	the	two	distributions:

• Because	H(p)	is	zero	in	our	case	(and	even	if	it	wasn’t	it	would	
be	fixed	and	have	no	contribution	to	gradient),	to	minimize	this	
is	equal	to	minimizing	the	KL	divergence	between	p	and	q

• The	KL	divergence	is	not	a	distance	but	a	non-symmetric	
measure	of	the	difference	between	two	probability	distributions	
p and	q

1/18/189

Classification	over	a	full	dataset

• Cross	entropy	loss	function	over	
full	dataset	{xi,yi}Ni=1	

• Instead	of

• We	will	write	f in	matrix	notation:
• We	can	still	index	elements	of	it	based	on	class

1/18/1810

Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	𝜃:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

Details:	General	ML	optimization

• For	general	machine	learning	𝜃usually
only	consists	of	columns	of	W:

• So	we	only	update	the	decision	
boundary Visualizations	with	ConvNetJS by	Karpathy

1/18/1812

Classification	difference	with	word	vectors

• Common	in	deep	learning:
• Learn	both	W	and	word	vectors	x

Very	large!
Danger	of	overfitting!

1/18/1813

A	pitfall	when	retraining	word	vectors

• Setting: We	are	training	a	logistic	regression	classification	model	
for	movie	review	sentiment	using	single	words.	

• In	the	training	data	we	have	“TV”	and	“telly”
• In	the	testing	data	we	have	“television”
• The	pre-trained word	vectors	have	all	three	similar:

• Question:What	happens	when	we	retrain	the	word	vectors?

TV
telly

television

1/18/1814

A	pitfall	when	retraining	word	vectors

• Question:	What	happens	when	we	train	the	word	vectors?
• Answer:

• Those	that	are	in the	training	data move	around	
• “TV”	and	“telly”

• Words	not	in	the	training	data	stay
• “television”

1/18/1815

TV

telly

television

This	is	bad!

So	what	should	I	do?

• Question:	Should	I	train	my	own	word	vectors?	
• Answer:

• If	you	only	have	a	small training	data	set,	don’t	train	the	word	
vectors.	

• If	you	have	have	a	very	large dataset,	it	may	work	better	to	train	
word	vectors	to	the	task.

1/18/1816

TV

telly

television

Side	note	on	word	vectors	notation

• The	word	vector	matrix	L	is	also	called	lookup	table
• Word	vectors	=	word	embeddings =	word	representations	(mostly)
• Usually	obtained	from	methods	like	word2vec	or	Glove

V

L		=									d …									…

aardvark	a				…	meta					…			zebra

• These	are	the	word	features	xword from	now	on

• New	development	(later	in	the	class):	character	models	:o

[]

1/18/1817

Window	classification

• Classifying	single	words	is	rarely	done.

• Interesting	problems	like	ambiguity	arise	in	context!

• Example:	auto-antonyms:
• "To	sanction"	can	mean	"to	permit"	or	"to	punish.”
• "To	seed"	can	mean	"to	place	seeds"	or	"to	remove	seeds."

• Example:	ambiguous	named	entities:
• Paris	à Paris,	France	vs Paris	Hilton	
• Hathaway	à Berkshire	Hathaway	vs Anne	Hathaway

1/18/1818

Window	classification

• Idea:	classify	a	word	in	its	context	window	of	neighboring	
words.

• For	example,	Named	Entity	Recognition	is	a	4-way	classification	
task:
• Person,	Location,	Organization,	None

• There	are	many	ways	to	classify	a	single	word	in	context
• For	example:	average	all	the	words	in	a	window	
• Problem:	that	would	lose	position	information

1/18/1819

Window	classification

• Train	softmax classifier	to	classify	a	center	word	by	taking	
concatenation	of	all	word	vectors	surrounding	it

• Example:	Classify	“Paris”	in	the	context	of	this	sentence	with	
window	length	2:	

…					museums						in									Paris									are						amazing				…	.

Xwindow =	[xmuseums xin xParis xare xamazing]T

• Resulting	vector	xwindow =	x	∈ R5d				,	a	column	vector!

1/18/1820

Simplest	window	classifier:	Softmax

• With	x	=	xwindow we	can	use	the	same	softmax classifier	as	before

• With	cross	entropy	error	as	before:	

• But	how	do	you	update	the	word	vectors?

same

predicted	model	
output	probability

1/18/1821

Deriving	gradients	for	window	model

• Short	answer:	Just	take	derivatives	as	before

• Long	answer:	Let’s	go	over	steps	together	(helpful	for	PSet 1)

• Define:	
• :	softmax probability	output	vector	(see	previous	slide)						
• :	target	probability	distribution	(all	0’s	except	at	ground	
truth	index	of	class	y,	where	it’s	1)

• and	fc =	c’th element	of	the	f	vector

• Hard,	the	first	time,	hence	some	tips	now	:)

1/18/1822

• Tip	1:	Carefully	define	your	variables	and	keep	track	of	their	
dimensionality!

• Tip	2:	Chain	rule!	If	y =	f(u)	and	u =	g(x),	i.e.	y	=	f(g(x)),	then:

• Example	repeated:	

Deriving	gradients	for	window	model

1/18/1823

• Tip	2	continued:	Know	thy	chain	rule
• Don’t	forget	which	variables	depend	on	what	and	that	x	

appears	inside	all	elements	of	f’s

• Tip	3:	For	the	softmax part	of	the	derivative:	First	take	the	
derivative	wrt fc when	c=y	(the	correct	class),	then	take	
derivative	wrt fc when	c¹ y	(all	the	incorrect	classes)

Deriving	gradients	for	window	model

1/18/1824

• Tip	4:	When	you	take	derivative	wrt
one	element	of	f,	try	to	see	if	you	can
create	a	gradient	in	the	end	that	includes
all	partial	derivatives:

• Tip	5:	To	later	not	go	insane	&	implementation!	à results	in	
terms	of	vector	operations	and	define	single	index-able	vectors:

Deriving	gradients	for	window	model

1/18/1825

• Tip	6:	When	you	start	with	the	chain	rule,
first	use	explicit	sums	and	look	at	
partial	derivatives	of	e.g.	xi or	Wij

• Tip	7:	To	clean	it	up	for	even	more	complex	functions	later:	
Know	dimensionality	of	variables	&simplify	into	matrix	notation

• Tip	8:	Write	this	out	in	full	sums	if	it’s	not	clear!

Deriving	gradients	for	window	model

1/18/1826

• What	is	the	dimensionality	of	the	window	vector	gradient?

• x is	the	entire	window,	5	d-dimensional	word	vectors,	so	the	
derivative	wrt to	x	has	to	have	the	same	dimensionality:

Deriving	gradients	for	window	model

1/18/1827

• The	gradient	that	arrives	at	and	updates	the	word	vectors	can	
simply	be	split	up	for	each	word	vector:

• Let	
• With	xwindow =	[xmuseums xin xParis xare xamazing]

• We	have

Deriving	gradients	for	window	model

1/18/1828

• This	will	push	word	vectors	into	areas	such	they	will	be	helpful	
in	determining	named	entities.	

• For	example,	the	model	can	learn	that	seeing	xin as	the	word	
just	before	the	center	word	is	indicative	for	the	center	word	to	
be	a	location

Deriving	gradients	for	window	model

1/18/1829

• The	gradient	of	J	wrt the	softmax weights	W!

• Similar	steps,	write	down	partial	wrt Wij first!
• Then	we	have	full	

What’s	missing	for	training	the	window	model?

1/18/1830

A	note	on	matrix	implementations

• There	are	two	expensive	operations	in	the	softmax
classifier:
• The	matrix	multiplication																				and	the	exp

• A	large	matrix	multiplication is	always	more	efficient	
than	a	for	loop!

• Example	code	on	next	slide	à

1/18/1831

A	note	on	matrix	implementations

• Looping	over	word	vectors	instead	of	concatenating	
them	all	into	one	large	matrix	and	then	multiplying	
the	softmax weights	with	that	matrix

• 1000	loops,	best	of	3:	639	µs	per	loop
10000	loops,	best	of	3:	53.8	µs	per	loop

1/18/1832

A	note	on	matrix	implementations

• Result	of	faster	method	is	a	C	x	N	matrix:

• Each	column	is	an	f(x)	in	our	notation	(unnormalized class	scores)

• You	should	speed-test	your	code	a	lot	too

• Tl;dr:	Matrices	are	awesome!	Matrix	multiplication	is	better	than	for	loop

33

Softmax (=	logistic	regression)	alone	not	very	powerful

• Softmax only	gives	linear	decision	boundaries	in	the	
original	space.	

• With	little	data	that	can	be	a	good	regularizer

• With	more	data	it	is	very	limiting!

1/18/1834

Softmax (=	logistic	regression)	is	not	very	powerful

• Softmax only	linear	decision	boundaries

• à Unhelpful	when
problem	is	complex

• Wouldn’t	it	be	cool	to	
get	these	correct?

1/18/1835

Neural	Nets	for	the	Win!

• Neural	networks	can	learn	much	more	complex	
functions	and	nonlinear	decision	boundaries!

1/18/1836

From	logistic	regression	to	neural	nets

1/18/1837

Demystifying	neural	networks

Neural	networks	come	with	
their	own	terminological	
baggage	

But	if	you	understand	how	
softmax models	work

Then	you	already	understand the	
operation	of	a	basic	neuron!

A	single	neuron
A	computational	unit	with	n	(3)	inputs

and	1	output
and	parameters	W,	b

Activation	
function

Inputs

Bias	unit	corresponds	to	intercept	term

Output

1/18/1838

A	neuron	is	essentially	a	binary	logistic	regression	unit

hw,b(x) = f (w
Tx + b)

f (z) = 1
1+ e−z

w,	b are	the	parameters	of	this	neuron
i.e.,	this	logistic	regression	model

b:	We	can	have	an	“always	on”	
feature,	which	gives	a	class	prior,	
or	separate	it	out,	as	a	bias	term

1/18/1839

f	=	nonlinear	activation	fct.	(e.g.	sigmoid),	w	=	weights,	b	=	bias,	h	=	hidden,	x	=	inputs

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
If	we	feed	a	vector	of	inputs	through	a	bunch	of	logistic	regression	
functions,	then	we	get	a	vector	of	outputs	…

But	we	don’t	have	to	decide	
ahead	of	time	what	variables	
these	logistic	regressions	are	
trying	to	predict!

1/18/1840

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
…	which	we	can	feed	into	another	logistic	regression	function

It	is	the	loss	function	
that	will	direct	what	
the	intermediate	
hidden	variables	should	
be,	so	as	to	do	a	good	
job	at	predicting	the	
targets	for	the	next	
layer,	etc.

1/18/1841

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time

Before	we	know	it,	we	have	a	multilayer	neural	network….

1/18/1842

Matrix	notation	for	a	layer

We	have	

In	matrix	notation

where	f is	applied	element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 + b1)
a2 = f (W21x1 +W22x2 +W23x3 + b2)
etc.

z =Wx + b
a = f (z)

f ([z1, z2, z3]) = [f (z1), f (z2), f (z3)]

W12

b3

1/18/1843

Non-linearities (aka	“f”):	Why	they’re	needed

• Example:	function	approximation,	
e.g.,	regression	or	classification
• Without	non-linearities,	deep	neural	networks	
can’t	do	anything	more	than	a	linear	
transform

• Extra	layers	could	just	be	compiled	down	into	
a	single	linear	transform:	
W1	W2	x =	Wx

• With	more	layers,	they	can	approximate	more	
complex	functions!

1/18/1844

Binary	classification	with	unnormalized scores

• Revisiting	our	previous	example:
Xwindow =	[xmuseums xin xParis xare xamazing]

• Assume	we	want	to	classify	whether	the	center	word	is	
a	Location	(Named	Entity	Recognition)

• Similar	to	word2vec,	we	will	go	over	all	positions	in	a	
corpus.	But	this	time,	it	will	be	supervised	and	only	
some	positions	should	get	a	high	score.

• The	positions	that	have	an	actual	NER	location	in	their	
center	are	called	“true”	positions.

1/18/1845

Binary	classification	for	NER

• Example:	Not	all	museums	in	Paris	are	amazing.

• Here:	one	true	window,	the	one	with	Paris	in	its	center	
and	all	other	windows	are	“corrupt”	in	terms	of	not	
having	a	named	entity	location	in	their	center.

• “Corrupt“	windows	are	easy	to	find	and	there	are	
many:	Any	window	that	isn’t	specifically	labeled	as	NER	
location	in	our	corpus

1/18/1846

A	Single	Layer	Neural	Network

• A	single	layer	is	a	combination	of	a	linear	layer	and	a	
nonlinearity:

• The	neural	activations	a	can	then	be	used	to	compute	
some	output.

• For	instance,	a	probability	via	softmax:
𝑝 𝑦 𝑥 = 	softmax 𝑊𝑎

• Or	an	unnormalized score	(even	simpler):

1/18/1847

Summary:	Feed-forward	Computation

We	compute	a	window’s	score with	a	3-layer	neural	net:	

• s	=	score("museums	in	Paris	are	amazing”)

xwindow =	[xmuseums xin xParis xare xamazing]

1/18/1848

Main	intuition	for	extra	layer

The	layer	learns	non-linear	interactions	between	the	
input	word	vectors.

Example:	only	if	“museums” is	first	vector	should	it	
matter	that	“in” is	in	the	second	position

Xwindow =	[xmuseums xin xParis xare xamazing]

1/18/1849

The	max-margin	loss

• Idea	for	training	objective:	Make	true	window’s	score	
larger	and	corrupt	window’s	score	lower	(until	they’re	
good	enough):	minimize

• s =	score(museums	in	Paris	are	amazing)
• sc =	score(Not	all	museums	in	Paris)

• This	is	not	differentiable	but	it	is	 Each	option
continuous	-->	we	can	use	SGD. is	continuous

1/18/1850

Max-margin	loss

• Objective	for	a	single	window:

• Each	window	with	an	NER	location	at	its	center	should	
have	a	score	+1	higher	than	any	window	without	a	
location	at	its	center

• xxx		|ß 1				à|			ooo

• For	full	objective	function:	Sample	several	corrupt	
windows	per	true	one.	Sum	over	all	training	windows.

• Similar	to	negative	sampling	in	word2vec
1/18/1851

Deriving	gradients	for	backprop

Assuming	cost	J	is	>	0,	
compute	the	derivatives	of	s and	sc wrt all	the	
involved	variables:	U,	W,	b,	x

à
1/18/1852

Deriving	gradients	for	backprop

• For	this	function:

• Let’s	consider	the	derivative	
of	a	single	weight	Wij

• Wij only	appears	inside	ai

• For	example:	W23 is	only	
used	to	compute	a2 not	a1

53

x1 x2																	x3 +1

f(z1)=			a1 a2	 =f(z2)	

s		 U2

W23
b2

Deriving	gradients	for	backprop

Derivative	of	single	weight	Wij:

54

x1 x2																	x3 +1

f(z1)=			a1 a2	 =f(z2)	

s		 U2

W23
b2

Ignore	constants	
in	which	Wij
doesn’t	appear

Pull	out	Ui since	
it’s	constant,	
apply	chain	rule

Apply	definition	
of	a

Just	define	
derivative	of	f	as	f’	

Plug	in	
definition	of	z

where																																																		for	logistic	f

Deriving	gradients	for	backprop

Derivative	of	single	weight	Wij continued:

Local	error	
signal

Local	input	
signal

55

x1 x2																	x3 +1

f(z1)=			a1 a2	 =f(z2)	

s		 U2

W23
b2

• We	want	all	combinations	of	i =	1,	2 and j	=	1,	2,	3	à ?

• Solution:	Outer	product:

where																		is	the	“responsibility”	or	error	signal
coming	from	each	activation	a

Deriving	gradients	for	backprop

• So	far,	derivative	of	single	Wij only	,	but	we	want	
gradient	for	full	W.

S

56

Deriving	gradients	for	backprop

• How	to	derive	gradients	for	biases	b?

57

x1 x2																	x3 +1

f(z1)=			a1 a2	 =f(z2)	

s		 U2

W23
b2

b

Training	with	Backpropagation

That’s	almost	backpropagation
It’s	taking	derivatives	and	using	the	chain	rule

Remaining	trick:	we	can	re-use	derivatives	computed	for	
higher	layers	in	computing	derivatives	for	lower	layers!

Example:	last	derivatives	of	model,	the	word	vectors	in	x

1/18/1858

Training	with	Backpropagation

• Take	derivative	of	score	with	
respect	to	single	element	of	
word	vector

• Now,	we	cannot	just	take	
into	consideration	one	ai
because	each	xj is	connected	
to	all	the	neurons	above	and	
hence	xj influences	the	
overall	score	through	all	of	
these,	hence:

Re-used	part	of	previous	derivative 1/18/1859

Training	with	Backpropagation

• With																								,what	is	the	full	gradient?	à

• Observations:		The	error	message	𝛿 that	arrives	at	a	hidden	
layer	has	the	same	dimensionality	as	that	hidden	layer

1/18/1860

Putting	all	gradients	together:

• Remember:	Full	objective	function	for	each	window	was:	

• For	example:	gradient	for	just	U:

1/18/1861

Summary

Congrats!	Super	useful	basic	components	and	real	model

• Word	vector	training

• Windows

• Softmax and	cross	entropy	error	 à PSet1

• Scores	and	max-margin	loss	

• Neural	network à PSet1

1/18/1862

Next	lecture:

Taking	more	and	deeper	derivatives	à Full	Backprop

High	level	tips	for	easier	derivations

Then	we	have	all	the	basic	tools	in	place	to	learn	about	
and	have	fun	with	more	complex	and	deeper	models	:)

1/18/1863

