Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher
Lecture 2: Word Vectors

Lecture Plan

Word meaning (15 mins)

Word2vec introduction (20 mins)

Research highlight (Danqi) (5 mins)

Word2vec objective function gradients (25 mins)

s e

Optimization refresher (10 mins)

Fire alarm allowance: 5 mins

1. How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)
 theidea thatis represented by a word, phrase, etc.

* theidea that a person wants to express by using
words, signs, etc.

* theidea thatis expressed in a work of writing, art, etc.
Commonest linguistic way of thinking of meaning:

* signifier & signified (idea or thing) = denotation

How do we have usable meaning in a computer?

Common answer: Use a taxonomy like WordNet that has
hypernyms (is-a) relationships and synonym sets

from nltk.corpus import wordnet as wn

panda = wn.synset('panda.n.01")
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper)

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01’),
Synset(‘'mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01’),
Synset(‘animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset(‘'whole.n.02'),
Synset('object.n.01’),
Synset('physical_entity.n.01"),
Synset('entity.n.01')]

(here, for good):

S: (adj) full, good

S: (adj) estimable, good, honorable, respectable
S: (adj) beneficial, good

S: (adj) good, just, upright

S: (adj) adept, expert, good, practiced,
proficient, skillful

S: (adj) dear, good, near

S: (adj) good, right, ripe

S: (adv) well, good

S: (adv) thoroughly, soundly, good
S: (n) good, goodness

S: (n) commodity, trade good, good

Problems with this discrete representation

e Great as a resource but missing nuances, e.g.,
synonyms:

 adept, expert, good, practiced, proficient, skillful?

* Missing new words (impossible to keep up to date):
wicked, badass, nifty, crack, ace, wizard, genius, ninja

e Subjective
* Requires human labor to create and adapt

* Hard to compute accurate word similarity =

Problems with this discrete representation

The vast majority of rule-based and statistical NLP work regards
words as atomic symbols: hokel, ﬁowferﬁht:e, walle

In vector space terms, this is a vector with one 1 and a lot of zeroes

[coocoocococo0c001000 0]
Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 13M (Google 1T)
We call this a “one-hot” representation

It is a localist representation

From symbolic to distributed representations

Its problem, e.g., for web search

* |f user searches for [Dell notebook battery size], we would
like to match documents with “Dell laptop battery capacity”

* |f user searches for [Seattle motel], we would like to match
documents containing “Seattle hotel”

But

motel [c o 000000001 0000]
hotel [oooo0oo00010000000] =0

Our query and document vectors are orthogonal
There is no natural notion of similarity in a set of one-hot vectors

Could deal with similarity separately;
instead we explore a direct approach where vectors encode it

Distributional similarity based representations

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”

(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 77

Word meaning is defined in terms of vectors

We will build a dense vector for each word type, chosen so that

it is good at predicting other words appearing in its context
... those other words also being represented by vectors ... it all gets a bit recursive

4)
0.286

0.792
-0.177
-0.107

0.109
-0.542

0.349

0.271

linguistics =

Basic idea of learning neural network word
embeddings

We define a model that aims to predict between a center
word w, and context words in terms of word vectors

p(context|w,) = ...
which has a loss function, e.g.,
J=1-p(w_|w,)
We look at many positions t in a big language corpus

We keep adjusting the vector representations of words
to minimize this loss

Directly learning low-dimensional word vectors

Old idea. Relevant for this lecture & deep learning:

* Learning representations by back-propagating errors
(Rumelhart et al., 1986)

* A neural probabilistic language model (Bengio et al., 2003)
* NLP (almost) from Scratch (Collobert & Weston, 2008)

* Arecent, even simpler and faster model:
word2vec (Mikolov et al. 2013) = intro now

2. Main idea of word2vec

Predict between every word and its context words!

Two algorithms
1. Skip-grams (SG)

Predict context words given target (position independent)

2. Continuous Bag of Words (CBOW)
Predict target word from bag-of-words context

Two (moderately efficient) training methods
1. Hierarchical softmax
2. Negative sampling
Naive softmax

Skip-gram prediction

TR G)

.. Furning mlo banking crises as ...

- 2V -t T \'\"'\/\-\j
P;\- cen‘*ov VX
Cln‘\ﬁ)d W’Ag Word (ﬂ" W()

mw A w;ﬂ‘b” fO.'n.'h‘Oh A U7 Wa’* wind ow

Details of word2vec
For each word t=1 ... T, predict surrounding words in a
window of “radius” m of every word.

Objective function: Maximize the probability of any
context word given the current center word:

.r
(0) =) Hjsm P(W{;ql We) 9)
-
Tfia::& (=T 2 2 leg Plverylvs)
o 21 Mgy s

,.¢o
Where 6 represents all variables we will optimize

The objective function — details

e Terminology: Loss function = cost function = objective function
e Usual loss for probability distribution: Cross-entropy loss

* With one-hot w,,; target, the only term left is the negative log
probability of the true class

* More on this later...

Details of Word2Vec

Predict surrounding words in a window of radius m of
every word

For p(w:ij|w:) the simplest first formulation is

N %P ('/‘:r Ve ;
r("') F Z::' exp (“‘wT v.)

where o is the outside (or output) word index, c is the
center word index, v, and u, are “center” and “outside
vectors of indices cand o

”

Softmax using word c to obtain probability of word o

Dot products

Ty = - Z WY;
KV-U-V .. " 0

Bnaaw .u(: W Oﬂ‘ V aré Mo Sfmi'ar!

Therdle over w=l W ougV means:
Work out hov anl1df each NNJ rsTo v '

Softmax function: Standard map
from RY to a probability distribution

| Gef +mq>z
Exponentiate to
make positive .

W

P§ W "
Normalize to e 2
[) [[) ‘
give probability

Vx 1 Vel

W;v,;'- {PME):) Vy{[‘n
" Uxn vr. () *mu “; vc. Tp‘;l'
gk; ram . pras=t :
F 3 > 0,07 a}
5‘“’“‘)‘ 6. 6
. &
-’9 ::.: o
Vx1 (JX\/ ;’:’A A
' l
\l\/ 0,7? {o
Wy i |
o] [0,07 (&
0 - 0,07
AR - Scﬂmly 6.1 |
R K) o\,
o| == 12 == K o1t A
cmow A - ‘0 o
)| [T MJ © \Aél'ual
01 [---- 05 - 0.7 o
o1 » ﬁ . Covitext
1 vl (0] wovd $
o’ o €-l
one |30 o TR | = | ;
X “or
o] wird embelAing o N
67” ! malrix @S
Tation 0.7 |+) ‘
1 | repress | | |
wov o Al wi

To train the model: Compute all vector gradients!

* We often define the set of all parameters in a model in
terms of one long vector 0

* |n our case with

Vaardvark
d-dimensional vector V
and
V many words:

v

H — zebra c RQdV
Ugardvark
* We then optimize Uy
these parameters
| Uzebra

Note: Every word has two vectors! Makes it simpler!

. Derivations of gradient

Whiteboard — see video if you're not in class ;)
The basic Lego piece

. AN A Nl
Useful basics: ¢ a _ dax
X X

If in doubt: write out with indices

Chain rule! If y = flu) and u = g(x), i.e. y = f(g(x)), then:

dy _ dy du
dr du dx

Chain Rule

e Chainrule!If y=f(u) and u=g(x), i.e. y = flg(x)), then:
dy _ dy du _ df(u) dg(x)

dr du dx du dx
e Simple example: 4 _ i5(x3+7)4
dx dx
y:f(u):5u4 u:g(x):x3—|_7
dy 3 du 5
2 _ 9 =
T Ou - 3x

Interactive Whiteboard Session!

10 =73 S logp(wlw)

t=1 —m<;j<m,j#0

Let’s derive gradient for center word together
For one example window and one example outside word:

exp (u:\’c)

eXp (u.ve)

lag plofe) = loy 5

wel

You then also also need the gradient for context words (it’s
similar; left for homework). That’s all of the paramets & here.

_-O_l:lg;}fv-e, Fun chion

Maximize _S,('Q) = ﬁ— Tr P(W’ .'we}o)

=l mg i m
J

Or mfn ‘.m ‘.'z;e/

1 T
g loy, TO) =TS 2 logplig|ur)

,.‘ks.'(lwoO’ 2 4=\ vms)'s m
. o g
(1634!'6 To w;mow:\ezi.) ,{W‘T J#‘ }. J‘w
03 s mow ’Mdn\ "‘_‘JLQ'
where T
ﬁﬂ <uo Vc.) Each wovel +7Pe,

(o)) =T s oA
wovd ﬂPS 2 Z -2—\{‘) (u“’-r Ve) lr(\«s '!bi‘_’. w7'~)°!

we | representations :
We. now Joke denvilives +o wark ool minimum @3 <ifer word
and codtest wor*!

loJ s (usTve) .
3, é ex (u Ve)
b P Vwe
2
o Bj“ '03 exp (“'o Vc)) 3"" |03 .é' e.xf (u
! z @
@ .3- 'o(i e)fr (u Vc) = :/v uo‘f‘/6 =
s] You C‘W\odo ‘ﬂ«ukjs e an'qb‘e a‘l’q ‘hnw,
f' Inverges and ths may ke)‘,JP-R,) when ‘HIWIJS
l:,ef:rl‘ aﬂ* 1VMr|7 \ .]
S:t\oo\3 V\l i u;" Ve 2— 2 (\A °);("‘)c
single M. 'c)(\'c)\5 i=)
1oble J
varia - (u,)i

caleulvs Each term is 2ene O\cefr when i=)

3‘(— i ‘-';| o e
-+ | &:A%(Vozv" 3 v .
— "4 - . %"" 2 e$P (u, Vc>
E|£¥f (“w V‘)J 1 © t{,——Imwﬂ"an‘\' b Jclqu]e .’-.le,y
- el e~ b .
; 'f(%(,\’c)) = ﬁ— . i‘\z Vse <hain v'\ale,
Ve = |
Vv Move deniv
—~ v l <Z L\') WP (\Ax-er.)) l.\nSo‘J-z S
wZ-u op (wa"v) Ll 3 2:4(¥9) h
] y -r Chahy
(& epls-Tv) 33‘ waTve) “pl
A=|

ERSors

X=)

/;‘ los(ﬂo’c))‘-"— Wo — v , c) ie"?(“ ‘))

Ve e.\c (IA

v (0isTbule
Z e 2) Uy o
~
Vi e.vtp (“\w V¢_7 acvo3s SuLM
londl

(ch u
‘: ‘fl\\‘) &l wgo‘l’d’ won:

qverq ovev ‘l"
conlext vedlors WC\J f'l

\’7 $hew Prbbabﬂrly

= obgerved — e:%pz—}

TL\S X3 d\ns’r "Hu, dprl\/q‘hves ‘f;r '»u, 42!3{?" vedor P“V“”té'}ffj
Alsb neel de.m'v;}fves -ﬁi"‘ Odplﬂ. V&C"o\f‘ quﬂ,g‘"&-s

(they’re, ¢"'"')“) =+

T'I»'J" wé have V'IV We Wr'{ ﬂ” farmd?rs G"‘ cah mwmimize

Calculating all gradients!

e We went through gradient for each center vector vin a window
e We also need gradients for outside vectors u
e Derive at home!

e Generally in each window we will compute updates for all
parameters that are being used in that window.

e For example, window size m = 1, sentence:
“We like learning a lot”

e First window computes gradients for:
* internal vector v, and external vectors uyy, and U, ming
e Next window in that sentence?

5. Cost/Objective functions

We will optimize (maximize or minimize)
our objective/cost functions

For now: minimize - gradient descent tangent line
Trivial example: (from Wikipedia) = slope=f{(%)
Find a local minimum of the function /

f(x) = x*-3x3+2, with derivative f'(x) = 4x3-9x?

X

x_old 0

X_new 6 # The algorithm starts at x=6
eps 0.01 # step size

precision 0.00001

f derivative(x):

4 * Xx¥*k3 - 9 * xk*D . .
* * Subtracting a fraction
abs(x_new - x old) > precision: of the gradient moves
x_old X_new
Xx new = X old - eps * f derivative(x_old) You f?“.lards fhe
minimom!

("Local minimum occurs at", x new)

Gradient Descent

To minimize .J(6) over the full batch (the entire training data)
would require us to compute gradients for all windows

Updates would be for each element of 6 :

gnew — Hold J(Q)

J) 890”

With step size a
In matrix notation for all parameters:

grew — Qold agold J(@)
grew — gold — o757 (6)

Vanilla Gradient Descent Code

grew — Hold . CVV@J(Q)

while True:
theta grad = evaluate gradient(J,corpus,theta)
theta = theta - alpha * theta grad

Intuition

For a simple convex function over two parameters.

Contour lines show levels of objective function

z=x2—2y2

Stochastic Gradient Descent

e But Corpus may have 40B tokens and windows
e You would wait a very long time before making a single update!

e Very bad idea for pretty much all neural nets!

e Instead: We will update parameters after each window t
—> Stochastic gradient descent (SGD)

pnew — Hold . @V@Jt(e)

while True:
window = sample window(corpus)
theta grad = evaluate gradient(J,window,theta)
theta = theta - alpha * theta grad

