
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 2: Word Vectors



Lecture	Plan

1. Word	meaning	(15	mins)
2. Word2vec	introduction	(20	mins)
3. Research	highlight	(Danqi)	(5	mins)
4. Word2vec	objective	function	gradients	(25	mins)
5. Optimization	refresher	(10	mins)

Fire	alarm	allowance: 5	mins



1.	How	do	we	represent	the	meaning	of	a	word?

Definition:	meaning (Webster	dictionary)

• the	idea	that	is	represented	by	a	word,	phrase,	etc.

• the	idea	that	a	person	wants	to	express	by	using	
words,	signs,	etc.

• the	idea	that	is	expressed	in	a	work	of	writing,	art,	etc.

Commonest	linguistic	way	of	thinking	of	meaning:

• signifier ⟺ signified	(idea	or	thing)	=	denotation



How	do	we	have	usable	meaning	in	a	computer?
Common	answer:	Use	a	taxonomy	like	WordNet	that	has	
hypernyms	(is-a)	relationships								and	synonym	sets

(here,	for	good):
[Synset('procyonid.n.01'),	
Synset('carnivore.n.01'),	
Synset('placental.n.01'),	
Synset('mammal.n.01'),	
Synset('vertebrate.n.01'),	
Synset('chordate.n.01'),	
Synset('animal.n.01'),	
Synset('organism.n.01'),	
Synset('living_thing.n.01'),	
Synset('whole.n.02'),	
Synset('object.n.01'),	
Synset('physical_entity.n.01'),	
Synset('entity.n.01')]

S:	(adj)	full,	good	
S:	(adj)	estimable,	good,	honorable,	respectable	
S:	(adj)	beneficial,	good	
S:	(adj)	good,	just,	upright	
S:	(adj)	adept,	expert,	good,	practiced,	
proficient,	skillful
S:	(adj)	dear,	good,	near	
S:	(adj)	good,	right,	ripe
…
S:	(adv)	well,	good	
S:	(adv)	thoroughly,	soundly,	good	
S:	(n)	good,	goodness	
S:	(n)	commodity,	trade	good,	good	



Problems	with	this	discrete	representation

• Great	as	a	resource	but	missing	nuances,	e.g.,	
synonyms:
• adept,	expert,	good,	practiced,	proficient,	skillful?

• Missing	new	words	(impossible	to	keep	up	to	date):
wicked,	badass,	nifty,	crack,	ace,	wizard,	genius,	ninja

• Subjective

• Requires	human	labor	to	create	and	adapt

• Hard	to	compute	accurate	word	similarity	à



Problems	with	this	discrete	representation

The	vast	majority	of	rule-based	and statistical	NLP	work	regards	
words	as	atomic	symbols:	hotel, conference, walk

In	vector	space	terms,	this	is	a	vector	with	one	1	and	a	lot	of	zeroes

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
Dimensionality:	20K	(speech)	– 50K	(PTB)	– 500K	(big	vocab)	– 13M	(Google	1T)

We	call	this	a	“one-hot”	representation

It	is	a	localist representation



From	symbolic	to	distributed	representations

Its	problem,	e.g.,	for	web	search
• If	user	searches	for	[Dell	notebook	battery	size],	we	would	
like	to	match	documents	with	“Dell	laptop	battery	capacity”

• If	user	searches	for	[Seattle	motel],	we	would	like	to	match	
documents	containing	“Seattle	hotel”

But
motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]T

hotel  [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] = 0
Our	query	and	document	vectors	are	orthogonal
There	is	no	natural	notion	of	similarity	in	a	set	of	one-hot	vectors

Could	deal	with	similarity	separately;	
instead	we	explore	a	direct	approach	where	vectors	encode	it

Sec. 9.2.2



Distributional	similarity	based	representations

You	can	get	a	lot	of	value	by	representing	a	word	by	
means	of	its	neighbors

“You	shall	know	a	word	by	the	company	it	keeps”
(J.	R.	Firth	1957:	11)

One	of	the	most	successful	ideas	of	modern	statistical	NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

ë These	words	will	represent	banking	ì



Word	meaning	is	defined	in	terms	of	vectors

We	will	build	a	dense	vector	for	each	word	type,	chosen	so	that	
it	is	good	at	predicting	other	words	appearing	in	its	context
… those	other	words	also	being	represented	by	vectors	… it	all	gets	a	bit	recursive

linguistics		=

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271



Basic	idea	of	learning	neural	network	word	
embeddings

We	define	a	model	that	aims	to	predict	between	a	center	
word	wt and	context	words	in	terms	of	word	vectors

p(context|wt)	=	…

which	has	a	loss	function,	e.g.,

J =	1	−	p(w−t	|wt)	

We	look	at	many	positions	t	in	a	big	language	corpus

We	keep	adjusting	the	vector	representations	of	words	
to	minimize	this	loss



Directly	learning	low-dimensional	word	vectors

Old	idea.	Relevant	for	this	lecture	&	deep	learning:
• Learning	representations	by	back-propagating	errors	

(Rumelhart et	al.,	1986)

• A	neural	probabilistic	language	model	(Bengio et	al.,	2003)		

• NLP	(almost)	from	Scratch	(Collobert &	Weston,	2008)

• A	recent,	even	simpler	and	faster	model:	
word2vec	(Mikolov et	al.	2013)	à intro	now



2.	Main	idea	of	word2vec

Predict	between	every	word	and	its	context	words!

Two	algorithms
1. Skip-grams	(SG)

Predict	context	words	given	target	(position	independent)

2. Continuous	Bag	of	Words	(CBOW)
Predict	target	word	from	bag-of-words	context

Two	(moderately	efficient)	training	methods
1. Hierarchical	softmax
2. Negative	sampling
Naïve	softmax



Skip-gram	prediction



Details	of	word2vec

For	each	word	t =	1	… T,	predict	surrounding	words	in	a	
window	of	“radius”	m of	every	word.

Objective	function:	Maximize	the	probability	of	any	
context	word	given	the	current	center	word:

Where	θ represents	all	variables	we	will	optimize



The	objective	function	– details

• Terminology:	Loss	function	=	cost	function	=	objective	function
• Usual	loss	for	probability	distribution:	Cross-entropy	loss
• With	one-hot	wt+j target,	the	only	term	left	is	the	negative	log	

probability	of	the	true	class
• More	on	this	later…



Details	of	Word2Vec

Predict	surrounding	words	in	a	window	of	radius	m of	
every	word

For																						the	simplest	first	formulation	is	

where	o is	the	outside	(or	output)	word	index,	c is	the	
center	word	index,	vc and	uo are	“center”	and	“outside”	
vectors	of	indices	c and	o

Softmax using	word	c to	obtain	probability	of	word	o

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)
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Dot	products



Softmax	function:	Standard	map
from	ℝV to	a	probability	distribution

Exponentiate	to
make	positive

Normalize	to
give	probability



Skip	gram	model	structure



To	train	the	model:	Compute	all vector	gradients!

• We	often	define	the	set	of	all parameters	in	a	model	in	
terms	of	one	long	vector	

• In	our	case	with	
d-dimensional	vectors
and
Vmany	words:

• We	then	optimize
these	parameters

Note:	Every	word	has	two	vectors!	Makes	it	simpler!



4.	Derivations	of	gradient

• Whiteboard	– see	video	if	you’re	not	in	class	;)

• The	basic	Lego	piece

• Useful	basics:

• If	in	doubt:	write	out	with	indices

• Chain	rule!	If	y =	f(u)	and	u =	g(x),	i.e.	y	=	f(g(x)),	then:



Chain	Rule

• Chain	rule!	If	y =	f(u)	and	u =	g(x),	i.e.	y	=	f(g(x)),	then:

• Simple	example:	



Interactive	Whiteboard Session!

Let’s	derive	gradient	for	center	word	together
For	one	example	window	and	one	example	outside	word:

You	then	also	also	need	the	gradient	for	context	words	(it’s	
similar;	left	for	homework).	That’s	all	of	the	paramets θ here.











Calculating	all	gradients!

• We	went	through	gradient	for	each	center	vector	v in	a	window
• We	also	need	gradients	for	outside	vectors	u
• Derive	at	home!	

• Generally	in	each	window	we	will	compute	updates	for	all	
parameters	that	are	being	used	in	that	window.

• For	example,	window	size	m =	1,	sentence:	
“We	like	learning	a	lot”

• First	window	computes	gradients	for:	
• internal	vector	vlike and	external	vectors	uWe and	ulearning

• Next	window	in	that	sentence?



5.	Cost/Objective	functions
We	will	optimize	(maximize	or	minimize)	
our	objective/cost	functions

For	now:	minimize	à gradient	descent

Trivial	example:	(from	Wikipedia)
Find	a	local	minimum	of	the	function	
f(x)	=	x4−3x3+2,	with	derivative	f'(x)	=	4x3−9x2

Subtracting a fraction 
of the gradient moves 

you towards the 
minimum!



Gradient	Descent

• To	minimize													over	the	full	batch	(the	entire	training	data)	
would	require	us	to	compute	gradients	for	all	windows

• Updates	would	be	for	each	element	of	θ :

• With	step	size	α
• In	matrix	notation	for	all	parameters:



Vanilla	Gradient	Descent	Code



Intuition

For	a	simple	convex	function	over	two	parameters.

Contour	lines	show	levels	of	objective	function



Stochastic	Gradient	Descent

• But	Corpus	may	have	40B	tokens	and	windows
• You	would	wait	a	very	long	time	before	making	a	single	update!

• Very bad	idea	for	pretty	much	all	neural	nets!
• Instead:	We	will	update	parameters	after	each	window	t	

à Stochastic	gradient	descent	(SGD)


